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Rayleigh–Bénard convection in horizontal layers of binary fluid mixtures heated from
below with realistic horizontal boundary conditions is studied theoretically using
multi-mode Galerkin expansions. For positive separation ratios the main difference
between the mixtures and pure fluids lies in the existence of stable three-dimensional
patterns near onset in a wide range of the parameter space. We evaluated the
stationary solutions of roll, crossroll, and square convection and we determined
the location of the stability boundaries for many parameter combinations thereby
obtaining the Busse balloon for roll and square patterns.

1. Introduction
Convection in binary miscible fluids like ethanol–water, 3He–4He, or various gas

mixtures shows a rich spectrum of pattern formation behaviour (see e.g. Platten
& Legros 1984; Cross & Hohenberg 1993; Lücke et al. 1998 for a review). The
spatiotemporal properties of convection in mixtures are more complex than those of
one-component fluids due to the influence of Soret-sustained concentration gradients.
The structural dynamics of the concentration distribution in mixtures results from an
interplay between three competing mechanisms: nonlinear advection and mixing, weak
solutal diffusion, and the Soret effect. The latter generates and sustains concentration
gradients in (linear) response to local temperature gradients. Without Soret coupling,
i.e. for vanishing separation ratio ψ = 0, any concentration fluctuation diffuses away.
For ψ 6= 0, however, the externally imposed vertical temperature difference across the
fluid layer sustains via the Soret effect concentration variations against the action of
advective mixing and diffusive dissipation.

The concentration field changes the advective properties of mixtures via solutal
buoyancy forces that enter into the momentum balance of the fluid. Thus, a concen-
tration fluctuation directly influences the flow which in turn changes and mixes the
concentration. In binary liquids, this nonlinear feedback is only weakly damped by
diffusive homogenization so that the concentration distribution shows anharmonic
and boundary layer structures. Furthermore, it is ultimately this feedback that causes
right at onset convection patterns that cannot be seen there in pure fluids. Examples
that occur, depending on parameters, are travelling waves of roll structures, standing
wave oscillations, and stationary squares. In addition mixtures show very interesting
secondary structures close to onset: spatially localized travelling wave states, station-
ary crossrolls, and oscillations between squares and rolls or crossrolls can be seen
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for different parameter combinations. Note that all of the aforementioned patterns
are Soret induced by the concentration field – they disappear in the pure fluid limit,
ψ → 0, when the Soret coupling to the concentration field is switched off.

In this paper we are concerned with the case of a positive Soret effect, ψ > 0, which
causes the heavier (lighter) component of the mixture to be driven towards lower
(higher) temperature regions. Therefore, heating a mixture with ψ > 0 from below
establishes a stronger density gradient as in a pure fluid. The solutal contribution to
the buoyancy increases the thermal destabilization of the fluid layer and convection
starts at smaller temperature differences compared to a pure fluid. One commonly
denotes the thermal driving regime with Rayleigh numbers R below the threshold
R0
c of pure fluids as the Soret regime and the regime above R0

c as the Rayleigh
region (Moses & Steinberg 1991). As a crude rule of thumb one can say that in the
Soret region, R < R0

c , square patterns are often observed in mixtures, whereas in the
Rayleigh region stable rolls are found.

There have been only a few theoretical investigations aimed at explaining the
transition scenario between squares at smaller R and rolls at larger R (Clune &
Knobloch 1992; Müller & Lücke 1988). Recently we have elucidated this transition
for a fixed wavenumber (Jung, Huke & Lücke 1998). In this paper we compare the
properties of square, roll, and CR patterns and we present a comprehensive linear
stability analysis of rolls and a more restricted one for squares. We elucidate how
the stability boundaries of rolls that have been determined by Busse and coworkers
(Busse 1967; Bolton, Clever & Busse 1985; Clever & Busse 1990) for pure fluid
convection are modified by taking into account the influence of the concentration
field in mixtures. We present for the first time a full numerical investigation of the
stability behaviour of rolls and squares and present the stability balloons of these
patterns in the (k, r)-plane for a wide range of fluid parameters.

The paper is organized as follows. In § 2 we describe briefly the basics of convection
in binary fluids and we explain the application of the Galerkin method to this
particular system. In § 3 we describe and compare the stationary solutions for rolls,
crossrolls, and squares. In § 4 the Galerkin method is used for the linear stability
analysis of roll and square patterns. We conclude in § 5 with a summary of our
results.

2. Mathematical foundations
In this paper we investigate convection in horizontal binary fluid layers confined

between perfectly heat conducting, rigid, impermeable plates. Since the system and its
basic equations are well known (Landau & Lifshitz 1966; Platten & Legros 1984), we
summarize in § 2.1 only the necessary formulas for our investigation. Then we present
relevant details related to the application of the Galerkin expansion technique to this
system.

2.1. System and basic equations

We consider a horizontal layer of a binary fluid mixture of thickness d in a homo-
geneous gravitational field, g = −g ez . A vertical temperature gradient is imposed by
fixing the temperature

T = T0 ± ∆T

2
at z = ∓d

2
, (2.1)

e.g. via highly conducting plates in experiments. Here we consider the plates to be
infinitely extended, rigid, and impermeable.
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Convection is described in terms of the fields of velocity u = (u, v, w), temperature T ,
mass concentration C of the lighter component, total mass density ρ, and pressure. In
the balance equations connecting these fields we scale lengths and positions by d, time
by the vertical thermal diffusion time d2/κ, temperature by νκ/αgd3, concentration
by νκ/βgd3, and pressure by ρ0κ

2/d2. Here ρ0 is the mean density, κ the thermal
diffusivity, ν the kinematic viscosity, and α and β are thermal and solutal expansion
coefficients, respectively. Using the Oberbeck–Boussinesq approximation the balance
equations read (Platten & Legros 1984; Hort, Linz & Lücke 1992)

∇ · u = 0, (2.2a)

(∂t + u · ∇)u = −∇p+ σ[(θ + c) ez + ∇2u], (2.2b)

(∂t + u · ∇)θ = Rw + ∇2θ, (2.2c)

(∂t + u · ∇)c = R ψ w + L(∇2c− ψ∇2θ). (2.2d)

Here θ, c, and p are the reduced deviations of temperature, concentration, and pressure,
respectively, from the conductive profiles.

The Lewis number L is the ratio of the concentration diffusivity D to the thermal
diffusivity κ, therefore measuring the velocity of concentration diffusion. The Prandtl
number σ is the ratio of the momentum diffusivity ν and κ:

L =
D

κ
, σ =

ν

κ
. (2.3)

The Rayleigh number R measures the thermal driving and the separation ratio ψ
measures the strength of the Soret coupling between temperature and concentration
fields

R =
αgd3∆T

νκ
, ψ = −β

α

kT

T0

. (2.4)

Here T0 is the mean temperature and kT is the thermal diffusion ratio (Landau &
Lifshitz 1966). The driving forces entering into the momentum balance equation (2.2b)
are pressure gradients and the buoyancy caused by the temperature and concentration
dependence of the density.

The off-diagonal term −Lψ∇2θ and the term Rψw in the concentration balance
equation (2.2d) describe the action of the Soret effect, i.e. the generation of concentra-
tion currents and concentration gradients by temperature variations. A Soret coupling
ψ > 0 implies a positive Soret effect. In this case the lighter component of the mixture
is driven in the direction of higher temperature thus increasing the density variations.

The Dufour effect, i.e. the driving of temperature currents by concentration varia-
tions, is of interest only in gas mixtures (Hort et al. 1992). But even there it is often
small (Liu & Ahlers 1997).

2.2. Galerkin method

To describe three-dimensional patterns with wavenumbers kx and ky each field X is
expanded as

X(x, y, z; t) =
∑
lmn

Xlmn(t)e
ilkxxeimkyyfn(z). (2.5)

Here l and m are integers and the fn form a complete system of functions that fits
the specific boundary condition for the field X at the plates. To find suitable sets
of functions fn we introduce some new fields. First, two scalar fields Φ and Ψ are
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defined via

u = ∇× ∇× Φez + ∇×Ψez. (2.6)

The structures we want to discuss do not show a horizontal mean flow for mirror
symmetry reasons. Then, (2.6) is the most general expression that fulfils the incom-
pressibility condition (2.2a) (Clever & Busse 1989). The analysis of mean flow effects
in the perturbations in discussed in § 2.4.

Second, instead of c we use the field

ζ = c− ψθ (2.7)

that allows the impermeability of the horizontal boundaries to be guaranteed in
a more convenient way. The diffusive part of the concentration current, driven by
concentration gradients as well as by temperature gradients is given by −L∇(c−ψθ).
At the impermeable plates the vertical component of this current vanishes which
requires

0 = ∂z (c− ψθ) = ∂zζ at z = ±1/2. (2.8)

The advective concentration current vanishes at the plates because there u = 0. The
balance equation for ζ is obtained by combining (2.2c) and (2.2d).

The boundary conditions for the fields Φ,Ψ, θ, and ζ read

Φ = ∂zΦ = Ψ = θ = ∂zζ = 0 at z = ±1/2. (2.9)

To expand the fields Ψ , θ, ζ, and Φ vertically we used different orthonormal sets fn(z)
as follows:

Ψ and θ: fn(z) =

{ √
2 cos (nπz) n odd√
2 sin (nπz) n even,

(2.10a)

ζ: fn(z) =


1 n = 0√

2 sin (nπz) n odd√
2 cos (nπz) n 6= 0 even,

(2.10b)

Φ: fn(z) =

{
C(n+1)/2(z) n odd

Sn/2(z) n even.
(2.10c)

Here Cn and Sn are Chandrasekhar functions (Chandrasekhar 1981).
The balance equations for the new fields are

∂t∆2Ψ = σ∇2∆2Ψ + {∇× [(u · ∇) u]}z , (2.11a)

∂t∇2∆2Φ = σ{∇4∆2Φ− ∆2[(1 + ψ)θ + ζ]} − {∇× ∇× [(u · ∇)u]}z, (2.11b)

(∂t + u · ∇)θ = −R∆2Φ+ ∇2θ, (2.11c)

(∂t + u · ∇)ζ = L∇2ζ − ψ∇2θ. (2.11d)

Here ∆2 = ∂2
x + ∂2

y .
By inserting the ansatz (2.5) for each field into the balance equations and projecting

them onto the basic functions one gets a nonlinear algebraic system of equations of
the form

Aκµ∂tXµ = BκµXµ + CκµνXµXν. (2.12)
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For simplicity amplitudes are labelled here by a single Greek index and the summation
convention is implied in (2.12) with Aκµ, Bκµ, and Cκµν being constant coefficients.

The number of modes has to be truncated to get a finite number of equations as
discussed later on. For stationary convection structures the left-hand side of (2.12)
vanishes and the solution can be found using a multidimensional Newton method.

2.3. Symmetries

Symmetries of convective structures impose conditions on the fields and/or imply
relations between different modes of the fields thereby restricting the number of
independent modes that are necessary to describe the patterns. For example, to
describe two-dimensional roll patterns with kx = k, ky = 0 that do not depend on y,
all amplitudes with m 6= 0 are set to zero in (2.5). On the other hand, square patterns
are characterized by kx = ky = k and Xlmn = ±Xmln . But we also investigate three-
dimensional crossroll patterns with kx = ky = k for which, however, Xlmn 6= ±Xmln .

2.3.1. Stationary rolls

To describe these two-dimensional structures one does not need the Ψ -field. Fur-
thermore, rolls are even in x with an appropriate choice of the plane x = 0. As a
consequence of this mirror symmetry one has Xl0n = X−l0n so that the lateral functions
e±iklx can be replaced by cos (klx). In addition the roll pattern is antisymmetric under
reflection in the plane z = 0 combined with a translation by half a wavelength in the
x-direction. This mirror glide symmetry makes half of the amplitudes zero, e.g. all
amplitudes Φl0n where l + n is an odd number.

It is no accident that stationary roll patterns have these symmetries. That they
are fulfilled at onset can be shown via a linear stability analysis of the conductive
state (Hollinger & Lücke 1995). The subset of modes that obey these symmetries
is closed in the sense that these modes do not drive others via nonlinear coupling.
Thus, the observed roll solution remains symmetric as long as no symmetry-breaking
bifurcation occurs on the stationary roll branch with symmetry-breaking modes
becoming linearly unstable. Such instabilities are covered by our stability analysis.
Moore, Weiss & Wilkins (1991) have discussed these symmetry-breaking perturbations
for free-slip and permeable boundary conditions.

2.3.2. Stationary squares and crossrolls with kx = ky

These have the same symmetry plane at x = 0 as rolls and an additional mirror
plane at y = 0. Furthermore, the squares and crossrolls also have a mirror glide
symmetry. Here, however, the symmetry transformation consists of a reflection in
the plane z = 0 combined with a translation by half a wavelength in the x- and
y-directions. To describe these three-dimensional patterns the Ψ -field cannot be
neglected. We also mention that in contrast to the other fields Ψ is odd in x and
y and has positive parity under the mirror glide operation thereby reflecting the
symmetries of the velocity field.

For square patterns that are invariant under rotation by 90◦ in which the x- and
y-directions are indistinguishable a further reduction of the number of mode occurs:
amplitudes like Φlmn and Φmln are the same. This is also true for θ and ζ. Again Ψ is
different. Here Ψlmn = −Ψmln .

2.4. Stability analysis

To make a full stability analysis one has to check the stability of the patterns to
perturbations with arbitrary wavevector dex + bey . To do so one has to introduce a
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Floquet term, writing the perturbation as

δX(x, y, z; t) = eidx+ibyest
∑
lmn

δXlmn eilkxx+imkyyfn(z). (2.13)

Such a perturbation is added to the known solution, the stability of which is to be
tested, and inserted into the balance equations. After linearizing and projecting one
gets a linear eigenvalue problem of the form

sAκµδXµ = BκµδXµ, (2.14)

with constant coefficients Aκµ and Bκµ. The aforementioned solution, i.e. the convective
structure described by it, is stable if every eigenvalue s has a negative real part for
every d and b.

The symmetry of the convective pattern discussed above can under some circum-
stances be used to get separated classes of possible eigenvectors representing the
perturbations. That means the eigenvalue problem can be reduced to finding the
eigenvalues of two matrices of about half of the size. Because evaluating the eigenval-
ues of a matrix is an O(N3)-process this always implies a reduction of the computation
time.

2.4.1. Stationary rolls

To perform the stability analysis of rolls one determines the growth behaviour of
perturbations of the form

δX(x, y, z; t) = eidx+ibyest
∑
ln

δXl0n eilkxfn(z). (2.15)

Contrary to the roll solutions, their perturbations may contain a mean flow com-
ponent that is discarded in (2.6). However, our perturbation ansatz (2.15) contains
modes like δΦ001e

idx+ibyC1(z) describing a mean flow in the limit b, d → 0, and the
equation of motion for δΦ001 reduces to two independent equations for the mean
flow as they are used e.g. in Clever & Busse (1991). If there is a mean flow in the
perturbations, then modes like the δΦ001-mode diverge when b, d goes to zero such
that the long-wavelength component of the velocity remains finite. However, in the
parameter range explored here, the perturbations limiting the stability balloon of rolls
have finite b or d and thus no mean flow.

Because of the periodicity of the patterns in x and their mirror symmetry it suffices
to consider d ∈ [0, k/2]. In the y-direction, however, all perturbation wavenumbers,
say b > 0, have to be investigated.

The linear system of equations (2.15) always separates into two subsystems of
perturbations δXµ that belong to modes with amplitudes Xµ that are antisymmetric

(G-perturbations) or symmetric (G-perturbations) under the mirror glide operation
(x, y, z) → (x + λ/2, y + λ/2,−z). For example, all perturbations with amplitudes
δΦl0n with even l + n are G-perturbations, and the perturbations with odd l + n are
G-perturbations.

In general the perturbations (2.15) do not have a well-defined symmetry under the
mirror glide operation. This is only the case if d = nk. If n is even (odd) then the
perturbations have the same (opposite) parity as the modes they belong to. Every
G-perturbation can be written as a G-perturbation (and vice versa) by choosing a
new d′ = d− k. Thus the distinction between G- and G-perturbations is well defined
only for fixed d.

It is possible to restrict the stability analysis to one set of perturbations by extending
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the investigated d-interval to [0, k]. Consider for example a G-perturbation with
d ∈ [0, k/2]. It can just as well be written as a G-perturbation with a new d′ = d− k
or equivalently d′ = k − d. Thus one finds all G-perturbations with d ∈ [0, k/2] again

as G-perturbations with d′ ∈ [k/2, k]. We will therefore restrict ourselves to the set of
perturbations that has negative parity under the mirror glide operation at d = 0, i.e.
we investigate the G-perturbations in the whole interval [0, k].

In special cases the system of equations can be separated even further. For d = 0
the perturbations can be divided into those that are symmetric and those that
are antisymmetric under the operation x → −x. Furthermore, if b = 0 then the
perturbations contain either no or only δΨ -amplitudes.

2.4.2. Stationary squares and crossrolls with kx = ky

Because the amount of computational power needed to make a full stability analysis
of these three-dimensional structures is too large, we will discuss perturbations only for
periodic boundary conditions, i.e. d = b = 0. Here again a separation of perturbations
is possible into those that change sign or do not under the mirror glide operation.

Furthermore, the stability problem is invariant under x → −x and y → −y. Thus
one can distinguish between perturbations that are even in x and y, odd in x and y, or
even in x and odd in y (or equivalently odd in x and even in y). If the perturbations
have the same symmetry in both directions one can in the case of squares finally
make use of a last symmetry property and separate perturbations that are symmetric
or antisymmetric under the exchange of the x- and y-directions. This is not possible
for CR patterns because of their lack of the x↔ y symmetry.

As we will see in § 4.3, the destabilizing perturbations of squares fall into the
subclass that is even in x and y, and therefore do not drive a mean flow.

3. Properties of the patterns
Squares, crossrolls, and rolls are realized as stable convection structures somewhere

in parameter space. Furthermore, if L is sufficiently small these three patterns appear
for fixed L, σ, ψ, and k as global attractors at different Rayleigh numbers (however,
crossrolls coexist bistably with oscillations in a small R-interval (Jung et al. 1998)).
So it is easy to enforce their stable experimental realization successively by increasing
the Rayleigh number beyond the onset of convection.

To understand the behaviour of the patterns it is useful to consider the driving
region near onset and the Rayleigh region separately. In the pure fluid the critical
point is at a Rayleigh number R0

c = Rc(ψ = 0) = 1707.762 and a wavenumber
k0
c = kc(ψ = 0) = 3.117 (Chandrasekhar 1981). In the binary mixtures with positive

separation ratios that we are dealing with, the critical Rayleigh number is smaller,
Rc(ψ > 0) < R0

c , since the solutal contribution to the quiescent state’s buoyancy force
enhances the latter. Thus a smaller thermal driving, i.e. a smaller Rayleigh number,
suffices to reach the critical buoyancy force size for onset of convection. The critical
wavenumber is also somewhat lower: kc(ψ > 0) < k0

c (Knobloch & Moore 1988).
When presenting our results we shall use the reduced Rayleigh number

r =
R

R0
c

(3.1)

and the reduced distance

ε =
R

Rc
− 1 =

r

rc
− 1 (3.2)
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from threshold rc = Rc/R
0
c .

3.1. Small-amplitude convection: amplitude equation

Very close to onset the wavenumber-dependent bifurcation behaviour of rolls and
squares can in pure fluids as well as in binary mixtures be described most simply by
two coupled cubic amplitude equations of the form

τ0∂tA = εA+ ξ2
0

(
∂x − i

2kc
∂2
y

)2

A− |A|2A− f|B|2A, (3.3a)

τ0∂tB = εB + ξ2
0

(
∂y − i

2kc
∂2
x

)2

B − |B|2B − f|A|2B. (3.3b)

Clune & Knobloch used such equations without the spatial derivative term (Clune &
Knobloch 1991). For a review of such amplitude equations and how they are related
to the basic equations see, e.g. Cross & Hohenberg (1993).

The amplitudes A and B of the eigenfunctions of the linearized hydrodynamic field
equations correspond quite well to the leading amplitudes

w101 = k2Φ101 = k2

∫
Φ(x, y, z) eikx C1(z) dx dy dz, (3.4a)

w011 = k2Φ011 = k2

∫
Φ(x, y, z) eiky C1(z) dx dy dz (3.4b)

of the vertical velocity field or the corresponding amplitudes of the temperature field.
The two roll solutions of (3.3) are A = |AR|ei(k−kc)x, B = 0 for rolls with wavevector

k = kex and A = 0, B = |BR|ei(k−kc)y for rolls with wavevector k = key . Squares are
described by the solution A = |AS |ei(k−kc)x, B = |BS |ei(k−kc)y with AS = BS . Crossrolls,
i.e. solutions with finite |A| 6= |B|, do not exist in (3.3).

If f > −1, the square solution exists besides the roll solution for ε above the neutral
stability curve

εstab(k) = ξ2
0(k − kc)2. (3.5)

We will always consider roll patterns with BR = 0 and AR 6= 0. For the roll solutions
one has

|AR|2 = ε− εstab(k), (3.6)

and for squares one finds

|AS |2 = |BS |2 =
ε− εstab(k)

1 + f
(3.7)

so that

|AR|2 = (1 + f)|AS |2. (3.8)

A stability analysis of the roll and square solutions shows that squares (rolls) are
stable (unstable) whenever |AR|2 < 2|AS |2, i.e. for −1 < f < 1, and they are unstable
(stable) whenever |AR|2 > 2|AS |2.

3.2. Full Galerkin expansion

Both square and roll solutions exist for every r above onset rc(ψ, L) and the mode
intensity |w101|2 for rolls is always greater than for squares. Hence the parameter f
in the amplitude equation has to be greater than 0 according to (3.8). In figure 1 we
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Figure 1. Flow intensity of stationary squares and rolls: the contribution k2(|Φ101|2 + |Φ011|2) from
the leading modes to w2 versus reduced Rayleigh number. Parameters are σ = 1, L = 0.01 (a), and
ψ = 0.08 (b). The thin curves denote the roll solution in pure fluids (ψ = 0).

present a plot of the leading contribution |w101|2 + |w011|2 to the vertical flow intensity
w2 versus r as obtained from the full Galerkin expansion for several parameters.

By comparing our results from the full Galerkin expansion with the amplitude
equation approximation we verified that the latter works well near onset rc(ψ) which
in figure 1 lies significantly below 1 – outside the plot range of figure 1. However, at
larger r when approaching the Rayleigh regime the amplitude approximation loses
its validity: |A|2 + |B|2 continues to grow linearly with r with its initial slope at onset
whereas |w101|2 + |w011|2 strongly curves upwards in the Rayleigh regime. Furthermore,
while |wR101|2 < |wS101|2 + |wS011|2 = 2|wS101|2 holds close to onset – as required within the
amplitude equation approximation for squares to be stable – the full solutions at larger
r are such that |wR101|2 > |wS101|2 +|wS011|2 without, however, rolls becoming stable, which
happens at even higher r.

In the Rayleigh region the amplitudes become comparable with those of the pure
fluid. This is because the concentration field gets more and more advectively mixed and
equilibrated and therefore loses its influence on the convection. Pure fluid convection,
ψ = 0, can be described close to onset rc(ψ = 0) = 1 by a cubic amplitude equation.
However, the initial slope of w2 versus r is much greater than for the binary mixtures
shown in figure 1 with ψ > 0. The transition between the Soret and Rayleigh regions
is especially sharp at small L – cf. the bifurcation diagram for L = 0.01 in figure 1(b).
We will observe such behaviour again when we consider the stability of the patterns.
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In the r-range investigated in this paper the field amplitudes Φ101 and Φ011 that
are kept in the amplitude equation approximation are also the leading ones in the
full Galerkin expansion. To describe only the fixed point solutions it would be
sufficient to approximate the velocity field of rolls (squares and crossrolls) by one
mode (two modes) only. But this restriction does not suffice when the linear stability
is investigated.

Although more than two amplitudes are needed, a good representation is easier
to achieve for the velocity field than for the ζ- and θ-fields. For them very many
modes are needed if L is small and r is large. This is a region of the parameter
space where the concentration field shows narrow boundary layer behaviour which
has to be resolved properly. In addition a consistent description of the temperature
field then also requires – despite the fact that it is rather smooth – high θ-modes as
discussed by Hollinger & Lücke (1998) and Hollinger (1996).

We followed Clever & Busse (1989) when defining our truncation prescription for
the Galerkin expansion. We defined a maximal mode index N and neglected all modes
Xlmn with |l|+ |m|+ n > N. We took the smooth behaviour of the velocity field into
account by defining two different indices: N1 for the Φ- and Ψ -fields and N2 = 2N1

for the θ- and ζ-fields. For the most anharmonic roll structures at r ≈ 1.5, L < 0.01,
and ψ = 0.15 that we have investigated expansions up to N2 = 40 were needed. This
is much more than for pure fluids, where truncations with N 6 8 are sufficient to
describe the stability behaviour quantitatively even at large r. Since the structure of
squares is somewhat smoother than that of rolls (cf. § 3.4) and since they exist stably
only at small r in or near the Soret region, we needed only N2 6 20 for squares.
Also the crossroll structures could be described well with such a truncation near the
first bifurcation point at small r, where they behave like squares. But in order also to
resolve the crossroll structures close to the second bifurcation point at larger r where
the crossroll solution merges into the roll solution (cf. § 3.3) more modes would have
been necessary.

3.3. Bifurcation behaviour of rolls, squares, and crossrolls

Figure 2 shows a typical bifurcation diagram for a parameter combination where
the three stationary patterns can be found. It also contains information on the
stability of these patterns. Crossrolls exist only in a finite r-interval. The crossroll
solution branches emerge out of the square branch slightly above r = 1. At r ' 1.36
the crossroll solution disappears when, e.g. the amplitude wCR

011 (downwards pointing
triangles in figure 2) becomes zero and the crossroll branch for wCR

101 (upwards pointing
triangles) ends on the roll solution branch wR101.

On the other hand, roll as well as square solutions exist for all r > rc of figure 2.
Initially at onset the latter are stable and the former are unstable. For the parameters
of figure 2 squares lose their stability in a Hopf bifurcation at r ' 1.11 to oscillations
which with increasing r eventually undergo a subharmonic bifurcation cascade that
is terminated when the crossroll states have become sufficiently attractive to quench
the oscillations. For other parameter combinations, in particular for larger L, there
are no oscillations and the squares transfer their stability directly to crossrolls (Jung
et al. 1998).

3.4. Structural properties of roll and square fields

In figure 3 we show the concentration distribution of square convection for two
parameter combinations that are representative of liquid and gas mixtures. This plot
and the concentration field structure of rolls and squares in a vertical cross-section
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interval 1.11 . r . 1.15 the stationary solutions are unstable but an oscillatory solution is stable
(Jung et al. 1998). Parameters are L = 0.01, σ = 10, ψ = 0.15, and k = k0

c . To get a consistent
bifurcation diagram all solutions had to be calculated with the same truncation level N2 = 16 (see
text). However, this is not sufficient to describe rolls quantitatively.

show a characteristic boundary layer and plume behaviour at small L. Such structures
occur when advective mixing is large compared to diffusion in the bulk of the fluid.
Consequently the boundary layers and plumes are more pronounced in rolls than in
squares since w2

R > w2
S as discussed in § 3.2. Thus squares with their broader boundary

layers are much smoother structures than rolls at the same parameters.
The practically harmonic velocity and temperature fields are not shown. For squares

they resemble the fields of a linear superposition of two perpendicular sets of rolls.
The Nusselt number N is roughly the same for rolls and squares. Close to onset

N − 1 ∝ |w101|2 + |w011|2, (3.9)

and the stable structure has the higher Nusselt number there, i.e. NR < NS in
accordance with the inequalities of § 3.1 predicted by the amplitude equation. Further
away from onset, however, one has NS < NR thus reflecting the magnitude relations
of w2 discussed in § 3.2.

In figure 4 we show the mixing parameter

M =

√〈δC2〉√〈δC2
cond〉

. (3.10)

It is defined by the mean square of the deviation, δC = C − C0, of the concentration
from the spatial mean, C0 = 〈C〉, reduced by the concentration variance in the
quiescent conductive state. Note that M is nearly the same for the very different
concentration fields of rolls and squares, if L is not too large (figure 4).
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Figure 3. Structural properties of square (a–d) and roll (e, f) convection for representative liquid
parameters (L = 0.01, σ = 10, left column) and gas parameters (L = σ = 1, right column) at
r = 1, ψ = 0.15. In (a, b) the concentration distribution of squares at mid-height, z = 0, is shown. In
(c–f) we show the concentration distribution in a vertical cross-section at y = 0. The largest vertical
upflow is at x = y = 0.

4. Linear stability analysis of rolls and squares
4.1. Instability mechanisms of rolls

The stability boundaries of roll patterns in pure fluids have been known since the
pioneering work of Busse (1978). At small Rayleigh numbers there exist five different
instability mechanisms giving rise to five different stability boundaries that limit the
region of stable rolls in the (R, k, σ)-parameter space. At small Prandtl numbers the
Eckhaus (EC), the skewed varicose (SV), and the oscillatory mechanism (OS) are
the important instabilities (Clever & Busse 1990). At higher Prandtl numbers the
zigzag (ZZ) and the crossroll (CR) mechanisms dominate (Busse 1967). Properties
and symmetries of these perturbations are discussed in Bolton et al. (1985). All these
five instabilities of roll patterns can also be found in binary mixtures.

In pure fluids and binary mixtures there always exist perturbations of the form
(2.15) with b = d = 0 to which a roll pattern is only marginally stable. Such a
perturbation has no Ψ -component and is odd in x. It reflects just an infinitesimal
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shift of the whole pattern in the x-direction. Therefore such a perturbation has
an eigenvalue s = 0. For later discussion we point out here that this particular
eigenvalue is connected to nearly all instabilities: the perturbations causing them and
the associated eigenvalues evolve smoothly into the lateral shift when one moves
in the (d, b)-plane from the d, b coordinates that locate the instability at the origin
d = b = 0.

In the remainder of this subsection we will briefly characterize the properties of
the aforementioned five perturbations before presenting our results of the stability
analyses for rolls in § 4.2 and for squares in § 4.3. We begin with the three types (EC,
ZZ, and CR) that touch the critical point ε = 0, k = kc and that also exist within the
two coupled amplitude equations (3.3a, b).

4.1.1. Eckhaus instability

Perturbations of the Eckhaus type are most critical at b = 0 and have no Ψ -
component. Thus they can be described as purely two-dimensional. The EC instability
tends to establish a new set of rolls with a better wavenumber in the direction of
the wave vector of the unstable roll pattern. Within the amplitude equations EC
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perturbations can be represented as variations of the A-amplitude that depend only
on x. Instability occurs here for ε and k such that εstab(k) < ε < εEC (k) = 3 εstab(k). As
d→ 0 the EC perturbations reduce to the lateral shift both in the amplitude equation
approximation and in the full hydrodynamic equations. For symmetry reasons s ∼ d2

near d = 0. In the case of EC instability (stability) there is a minimum (maximum)
of s at d = 0. It is therefore sufficient to investigate the pattern at a single point on
the d-axis near d = 0 numerically in order to determine the stability behaviour to EC
perturbations. But to find the most critical value of d an evaluation and interpolation
of s along the d-axis is necessary.

4.1.2. Zigzag instability

Zigzag perturbations have d = 0 and fall into the subclass of perturbations that
are odd in x. In the amplitude equations they appear as y-dependent perturbations
in the A-amplitude. They cause the growth of a new set of rolls that always has a
greater wavenumber than the original set. Consequently they confine the region of
stable rolls on the small-k side. The amplitude equations predict a ZZ instability for
all k < kc. Like EC perturbations the ZZ instability reduces to the lateral shift when
b→ 0 and the question of stability can be answered at a single point near d = b = 0.

4.1.3. Crossroll instability

This occurs when roll-like perturbations perpendicular to the existing pattern can
grow. In the amplitude equations (3.3a, b) they are described as perturbations in the
amplitude B when A describes the stationary roll pattern. Rolls are CR-unstable for
εstab(k) < ε < εCR(k) = f/(f − 1) εstab(k) when f > 1. In this case εCR(k) can be above
or below the Eckhaus boundary εEC (k) = 3 εstab(k) depending on whether f < 3

2
or

not. However, if f < 1 (which is the case when squares are stable, cf. § 3.1) then rolls
are CR-unstable for all ε > εstab(k) within the amplitude equation approximation
(3.3a, b). Note that the case f < 1 does not occur in pure fluids but it can occur in
binary mixtures when squares are stable at onset.

In the multi-mode Galerkin expansion the leading mode in the velocity field of the
CR perturbation has the form

δΦ001e
ibyC1(z), (4.1)

where near the critical point b ≈ kc. This is a mode of the G class of perturbations that
are symmetric under the mirror glide operation as discussed in § 2.4.1. Being a member
of the G class this perturbation cannot be connected smoothly in the (d, b)-plane to
EC or ZZ perturbations since the latter belong to the G class of perturbations that
are antisymmetric under the mirror glide operation. Since we decided to transform
all perturbations into the G class by a shift d′ = d− k as explained in § 2.4.1 we have
to rewrite the above CR perturbation (4.1) in the form

δΦ−101e
i(d−k)x+ibyC1(z). (4.2)

Writing the CR perturbations in this form one finds again that the corresponding
eigenvalue is connected to the eigenvalue of the lateral shift, only taken at a different
d = k.

Since the CR instability does not occur at arbitrarily small b one therefore has to
test several values of b and then apply an interpolation procedure.

4.1.4. Skewed varicose instability

This instability is not captured by the simple amplitude equations. The SV boundary
confines the stability balloon on the large-k side. When crossing this boundary the
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perturbation tends to replace the original set of rolls by a new set with smaller
wavenumber. The eigenvalue has its maximum at d 6= 0 and b 6= 0. The SV instability
also reduces to a lateral shift at d, b → 0 and can be found at infinitesimal small b
and d. To find the SV stability boundary of rolls one has to find the maximum of the
eigenvalue on a line between the d- and b-axes near the origin.

4.1.5. Oscillatory instability

The oscillatory instability is the only instability with complex eigenvalues at small
r. The perturbation is most critical at d = 0 and finite b. It is even in x. The pair of
complex conjugate eigenvalues undergoes a collision near b = 0 and generates two
real eigenvalues. One of these stationary perturbations transforms into the lateral
shift. The real eigenvalues are negative (if the pattern is stable to ZZ perturbations),
so the search for the OS instability requires an evaluation and interpolation along the
b-axis as for the CR instability.

4.2. Stability boundaries of rolls

We saw that the EC, ZZ, CR, SV, and one eigenvalue of the OS instability are
connected to the lateral shift at b = d = 0. Figure 5 shows an example of the most
dangerous eigenvalue in the (d, b)-plane. Along the d-axis the value of s decreases
from s = 0 at the origin. The pattern is therefore EC stable. The maxima at d = 0 and
d = k show that it is unstable to ZZ and CR perturbations. An oscillatory instability
does not occur here for these parameters since the eigenvalue is always real. There
is also no SV instability; this would cause a relative maximum between the d- and
b-axes.

Besides the perturbation at d = b = 0 which describes a lateral shift in all fields
there is another important location in wavenumber space that is of relevance for
concentration field perturbations and which thus is specific to binary mixtures. It lies
at d = k, b = 0 and describes a change of the mean concentration. This is most easily
understood by transforming this perturbation from the G class into the G class where
it then occurs at d = b = 0. Here it consists of one single mode δζ000. This mode is
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Figure 6. CR instability boundaries (solid lines) of rolls in the Soret region for σ = 10, ψ = 0.01
and several values of L. Rolls are stable to CR-perturbations above the solid lines. (a) For L > 0.2
the CR boundaries touch the neutral curve (dashed lines) in the critical point. (b) For L < 0.2 the
neutral curve goes further down (not shown) and is disconnected from the CR boundaries. Then
rolls are not stable at the critical point anymore.

constant in the fluid layer and describes a change in the average concentration. But
since only derivatives of the ζ-field appear in the balance equations such a mode has
no influence so that s = 0. The reason why this mode has to be taken into account
is that for d, b 6= 0 it describes a long-wavelength perturbation δζ000e

idx+iby that is of
physical importance. Because the average concentration is fixed, a divergence in the
δζ000-amplitude (as in δΦ001 for mean flow) cannot occur when approaching b, d = 0.
While the eigenvalue of the CR perturbation is connected to the above described zero
eigenvalue the CR instability always occurs at finite b. Only far in the unstable region
does the CR eigenvalue become positive at arbitrary small b. However, we found no
roll instability to occur directly near this point whereas EC, ZZ, and SV instabilities
are realized near the origin d = b = 0 as modifications of the lateral shift.

Figure 6 shows the CR instability boundaries of rolls in the full Galerkin model
in a parameter interval where an exchange of stability between rolls and squares at
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onset is predicted in Clune & Knobloch (1991). One sees that the curvature of the CR
boundary at the critical point diverges – as is also predicted by the amplitude equation
(3.3a, b) for f = 1 – when this exchange occurs. For the parameters σ = 10, ψ = 0.01
of figure 6 the exchange occurs at L = 0.2. On decreasing L below this value the
neutral stability curve (dashed line in figure 6) drops further down in r (not shown in
figure 6b) while the CR instability boundary moves up in r. The r-range between these
two curves locates stable squares. In such a situation where squares are stable at onset
the amplitude equations predict rolls to be CR-unstable everywhere while in the full
equations rolls become stable to CR-perturbations above the solid lines in figure 6.

The rolls could still be unstable there to other perturbations but we found the
minimum of the CR boundary always to be the minimal Rayleigh number for stable
rolls to exist. To know the location, rcCR , of this minimum of the CR boundary for
several parameters is therefore of interest. We have determined rcCR and the associated
wavenumber kcCR of the most dangerous CR perturbation for ψ = 0.01 and ψ = 0.15
and presented the results in figures 7 and 8, respectively. They show that rolls are
CR-unstable at onset, rc (dashed lined in figures 7a and 8a), for small L and large
σ. However, for larger L, being typical for gas mixtures, rolls are stable at the critical
point.
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At ψ = 0.15 the minimum rcCR of the CR boundary and its wavenumber location
kcCR strongly increase for small σ and L, cf. the small-L variation of the respective
curves at σ = 0.2 in figure 8(a, b); rcCR seems to diverge here, but a detailed inspection
shows that this is not true. The two branches of the CR boundary meet again at
higher r near the apparent divergence. They limit in the (k, r)-plane an oval region
of CR-stable rolls from below and also above. (The upper part of this region can
be unstable to OS-perturbations, though.) On reducing L rcCR remains finite but the
oval region gets smaller until the region of stable rolls vanishes. The experimental
observation of this behaviour might be difficult because it occurs in a region of the
parameter space that is not reached by ordinary fluid mixtures.

We also investigated the behaviour of bcCR , the wavenumber of the critical pertur-
bation at (kcCR , r

c
CR). Only in the Rayleigh region are the values of kcCR and bcCR near

kc = 3.117. But in general kcCR 6= bcCR . The linear analysis thus gives a hint of the
existence of patterns with kx 6= ky in the Soret region.

We have calculated all stability boundaries at small r for different values of L, ψ,
and σ. Concerning the stability behaviour of the roll structures one sees that in the
Rayleigh region, r & 1, where the concentration field is nearly uniform the binary
mixture behaves like a pure fluid. And the transition between the Soret and Rayleigh
regions is very sharp at small L and ψ. An example of such behaviour is given in
figure 9. Here only the EC, CR, and ZZ boundaries are of importance. In the Rayleigh
region r & 1 of figure 9 the CR, ZZ, and EC boundaries of the mixture (full lines
with circles, triangles, and squares, respectively) are lying close to the corresponding
boundaries of the pure fluid (long-dashed lines). Note in particular the vase-like form
of the EC boundary rEC (k) and the dent in the ZZ boundary rZZ (k): close to onset
(rc ' 0.6, kc ' 2.6 in figure 9), i.e. in the Soret regime, rEC (k) opens up parabolically
and rZZ (k) comes out of the critical point linearly with positive slope. However, in
the crossover range r ∼ 1 between the Soret and Rayleigh regimes the curve rEC (k)
pinches inwards and develops a waist so that in the Rayleigh regime it follows the
parabolic shape of the EC curve of the pure fluid that starts at k0

c ' 3.1, r0
c = 1.

Similarly, in the crossover range rZZ (k) bends towards small k to follow the ZZ
boundary of the pure fluid that has negative slope.

Figures 10–12 show that this sharp transition between the Soret and Rayleigh
regions that causes the vase-like structure of the EC boundary and the sharp bend of
the ZZ boundary does not occur when L is greater. For L = 0.01 and ψ > 0.08 the
critical point lies at k = 0. In this case the amplitude equations are not applicable.
We found the ZZ boundary and the left-hand EC branch to go to r = ∞ at small k.
But the right-hand EC branch does still meet the critical point.

At low Prandtl numbers the roll solutions have a finite region of stability but their
basin attraction seems to be very small since typically spiral defect chaos is observed
here in experiments (Liu & Ahlers 1996). But it has been shown that rolls could also
be observed with special experimental procedures (Cakmur et al. 1997).

We tried to find laws that connect the position of the boundaries and the fixed
point solutions. We found no simple connection between these for CR, ZZ and SV.
But the OS boundary for fixed σ seems to be independent of L and ψ in the plane of
k and the convection amplitude w101 instead of in the (k, r)-plane (figure 13).

For the EC boundary a more complicated procedure is needed. We define an
effective control parameter by linear interpolation of the values for the convection
amplitudes

∂w2
101

∂r
εeff (r) = w2

101, (4.3)
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and an effective reduced Rayleigh number

reff = εeff + r0
stab(k). (4.4)

Within the amplitude equations εeff = ε. Plotting the EC boundary in the (k, reff )-
plane instead of in the (k, r)-plane shows only a dependence on σ but not on ψ and
L in the Rayleigh region, cf. figure 14. However, this procedure does not hold in the
Soret region.

4.3. Stability boundaries of squares

Performing the stability analysis of squares we had to restrict ourselves to the case
d = b = 0 where the perturbations separate into different symmetry classes. An
analytical investigation of long-wavelength perturbations of squares near the critical
point can be found in Hoyle (1993). Because both squares and rolls can be described
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Figure 11. As figure 10 but at σ = 1.

as even in x and y and as mirror glide antisymmetric, one expects a perturbation that
destabilizes the squares and favours the rolls to fulfil these symmetries, too. However
such a perturbation should break the symmetry x↔ y. We actually always found the
most critical perturbation to fall into this symmetry class. Other perturbations that
break the mirror symmetry in the x- or y-direction are less critical.

Figure 15 shows typical examples for the stability region of squares. The left-
and right-hand sides of the stability boundaries might be not important – presumably
square structures are destabilized earlier by instabilities with finite b or d that tune
the wavenumber and that are not considered here.

Even if squares are stable at onset they always lose their stability to a roll pattern
at higher r. Furthermore, for certain parameters there does also exist a band of r-
values where neither squares nor rolls are stable. Within this band three-dimensional
crossrolls that break the x ↔ y symmetry can be stable. For certain parameters we
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Figure 12. As figure 10 but at σ = 10.

found stationary crossrolls only. For others oscillating crossroll structures appeared
as well. We have studied these structures in more detail in Jung et al. (1998).

5. Conclusion
We investigated roll, crossroll, and square convection in binary mixtures for a

wide range of parameter combinations using a multi-mode Galerkin method. All
these patterns are realized as stable convection structures somewhere in parameter
space. The bifurcation behaviour of rolls and squares can be modelled near onset by
amplitude equations which, however, lose their applicability in the Rayleigh region.
Moreover, the crossroll solution that connects the roll and the square branch at
Rayleigh numbers r ≈ 1 is absent in a simple ansatz of cubic amplitude equations.

We compared the Nusselt number and also the mixing parameter of the full numer-
ical solutions for rolls and squares. We found these global properties of the convective
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states to be approximately the same for these patterns despite the qualitatively dif-
ferent structures of the concentration fields of squares and rolls. Rolls show a strong
boundary layer behaviour at small L and high r, so that compared to pure fluids
much more modes are needed to describe them. Squares, on the other hand, show
a less pronounced boundary layer behaviour making it easier to determine these
three-dimensional solutions numerically.

In the main part of the paper we investigated the linear stability of rolls and
squares. To that end we performed a full and unrestricted stability analysis for rolls
using arbitrary perturbations and in addition a stability analysis of squares that
uses the periodic boundary conditions of the squares also for the perturbations. The
result is that squares are stable in the Soret region if L is sufficiently small. But they
always lose their stability at higher r. Rolls are stable at onset at higher L and in
the Rayleigh region where squares are unstable. Typically, however, there is a finite
interval of r-values in between where neither rolls nor squares are stable. In this
interval either stationary or oscillatory crossroll patterns are observed.

The analysis of the rolls shows that in the parameter range explored only the basic
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mechanisms of instability occur that are already known from the pure fluid, namely
the Eckhaus, zigzag, crossroll, oscillatory, and skewed varicose mechanisms. When the
Soret region is small, the stability balloon of the mixtures resembles the Busse balloon
for the pure fluid. However, at small L when the Soret region is large the situation is
different. The fixed point solutions show a sharp transition between the two regimes.
The convection amplitudes are very small in the Soret regime. But near r = 1 they
increase strongly and e.g. the Nusselt number becomes comparable to that of the pure
fluid convection. The stability boundaries of roll convection show a similar transition
here. In the Rayleigh region the boundaries are close to the boundaries of the pure
fluid. But upon reducing the Rayleigh number the boundaries begin to deviate from
their pure fluid counterparts. Near onset they finally agree with the predictions of the
amplitude equations for the mixtures.

The EC boundary is a typical example of this behaviour. For high L it has
a normal parabolic shape. But for small L one observes a qualitatively different
behaviour. When approaching r = 1 from above the two branches do not meet near
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Figure 15. Cross-sections of the stability balloon of squares in the (k, r)-plane obtained at σ = 0.1
(open squares) and σ = 10 (open circles) from a restricted stability analysis as explained in the
text. S denotes the region of stable squares. For σ = 0.1, L = 0.1, and ψ = 0.01 there are no stable
squares.

r = 1 as in the pure fluid but begin to separate again until r gets small enough for
the amplitude equations to become valid. A typical vase-like shape results.

A detailed inspection of the point where the rolls become unstable at onset shows
that the crossroll boundary is responsible for this loss of stability. As long as the rolls
are stable at onset, the crossroll boundary touches the critical point, as predicted by
the amplitude equations. At a certain point the amplitude equations show a global
loss of stability to crossroll perturbations. In the full Galerkin analysis this loss of
stability does not occur. The crossroll boundary disconnects from the neutral curve
and the rolls remain stable not at onset but at higher r.

Both the amplitude equations and the full Galerkin expansion show that square
structures become stable at onset when roll structures lose stability there and vice
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versa. The stability domain of squares lies mainly in the Soret region and it is separated
from the region of stable rolls at higher r by the region of crossroll structures. The
fact that square patterns have already lost their stability at relatively small r was
another favourable property which reduced the requirements for a numerical analysis
of these patterns.

The perturbations to which square solutions are unstable show those symmetries
that squares, rolls, and crossrolls have in common. But they break the x↔ y symmetry,
which exists only for squares. The resulting stability boundary delimits the region of
stable squares in the (k, r)-plane not only on top but also at the sides at smaller and
larger wavenumbers. It should be noted that our analysis of squares does not cover
instabilities that retune the actual wavenumber of the pattern considered and which
might occur earlier than the wavenumber-preserving instabilities investigated here.

This work was supported by the Deutsche Forschungsgemeinschaft.
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